

September 21, 1995

Suspending Recursion in
Causal-link Planning

Abstract

We present a strategy for suspending recursive open conditions during planning.
We also show conditions under which plans with suspended open conditions can
be pruned. To make this suspension and pruning strategy efficient, we use an

operator graph

 to analyze potential recursion before the planning process begins.

This approach covers a broader range of recursive problems than the approaches of
Morris and Kambhampati, and is much more tractable than Kambhampati’s
approach. We give experimental results that indicate 1) significant improvement
on recursive problems and 2) negligible overhead when applied to recursive and
non-recursive problems alike.

Keywords:

 causal-link planning, recursion, search-control, open condition
ordering.

David E. Smith

Rockwell Science Center
444 High St.

Palo Alto, CA 94301
de2smith@rpal.rockwell.com

(415) 325-7162

Mark A. Peot

Rockwell Science Center
444 High St.

Palo Alto, CA 94301
peot@rpal.rockwell.com

(415) 325-7143

September 21, 1995 1

1 Introduction

Recursion is prevalent in many planning domains. In fact, any time some of the
operations are reversible, there is the possibility of recursion in the planning
process. For transportation problems recursion occurs whenever it is possible to
travel both directions along a road or airway, or whenever it is possible to both
load and unload cargo. In Russell’s tire-changing problem, there is an operator for
opening the car trunk and another for closing it. Both operators are necessary to
achieve the goals of changing the tire and putting all the tools away. Unfortunately,
the presence of these two operators allows arbitrarily long sequences of Open-
trunk, Close-trunk, Open-trunk, Close-trunk …

Recursion problems like this can often be alleviated by smart search strategies. For
example, a planner can rank partial plans according to the amount of recursion and
prefer to work on those partial plans with less recursion. Once a partial plan is
chosen for elaboration, the planner can prefer working on open conditions that are
not recursive. While such control strategies are often useful, if the planning
problem has no solution, recursive plans and open conditions will eventually be
found and doggedly explored by the planner until the end of time (or memory).

Some planning systems avoid recursion by either pruning [5, 11] or restricting the
expansion of recursive open conditions [15]. Feldman and Morris [3] have pointed
out that these techniques are, in general, not admissable. (Sometimes they prune
the only viable plans). In [3], Feldman and Morris prove certain conditions under
which it is possible to stop expansion of recursive open conditions. In some cases,
it is necessary for them to add filter preconditions to operators in order for the
theorems to apply. It is not clear what fraction of recursion problems can, in fact,
be handled by their method.

More recently, Kambhampati [7] has presented methods for pruning

non-minimal

partial plans during search. While the theory is general, there are two significant
problems with its practical use:

1. The technique is computationally expensive for causal-link planners.

2. The conditions for pruning require that all remaining open-conditions in a
partial plan temporally precede the root of the recursion (see [7] for a pre-
cise description). This means that a partial plan must be at an advanced
stage of development before pruning is possible.

In this paper we also present admissable techniques for pruning recursion. In
Section 2 we present a method that suspends and prunes repeating open conditions.
As with the techniques of Feldman and Morris, and Kambhampati, this method
applies to recursion where the open condition is repeated exactly. The technique
we develop is relatively cheap and catches recursion early.

September 21, 1995 2

While the technique in Section 2 is applicable as described, there are ways to make
it significantly more efficient and powerful. In Section 3 we discuss the use of an

operator graph

 (introduced in [13]) for:

1. Quick detection of recursion during planning

2. Early pruning of plans with suspended open conditions

In Section 4 we consider a much broader class of recursion that we call

instance
recursion

. In this type of recursion, the predicate repeats, but the variable bindings
may be different each time. We develop a suspension and pruning technique that
controls this type of recursion.

For purposes of this paper we will consider a simple SNLP style causal-link
planner [8, 1]. To indicate the operator used in a particular plan step we will follow
the step name by the operator expression, e.g. . With recursion, open
conditions share the same predicate and variable bindings, so we will explicitly
name open conditions and follow with the actual expression, e.g.

O

3

: At(x)

. The
expression will be used to denote the causal link from step

S

1

 to

S

2

 with
the condition

C

.

Due to space limitations we provide only informal arguments for the theorems in
this paper.

2 Exact Recursion

Consider the partial plan shown in Figure 1. In this plan, the open condition

O:C

appears as a subgoal of the condition

C

 in the causal link . Intuitively it
seems that we should be able to discard this partial plan. If there is some way of
achieving

O:C

 then it could presumably be used to achieve

C

 directly, without the
intervening steps from

S

k

 to

S

j

. Unfortunately, this argument is not generally
sound.

There are two circumstances where the steps between

C

 and

O:C

 are still needed:

1. Some step between

S

k

 and

S

j

 (inclusive) might be used for another purpose,
i.e., some other open condition might link into one of these steps.

2. Some other step that clobbers

C

 might be forced to come between

S

k

 and

S

j

.
In other words, a threat to

C

 might arise that cannot be resolved by promo-
tion after

S

i

 or by demotion before the action used to achieve

O:C

.

These two circumstances are illustrated in Figures 2 and 3. The second of these is a
bit tricky. If the threat to

C

 were resolved by forcing it to come after step

S

i

 then the

Figure 1:

Simple example of exact recursion.

S5 Go x B,():

S1 S2
C→

Sj Si
C→

FinishSi
CSj

O:C Sk

September 21, 1995 3

recursion steps

S

k

 through

S

j

 would still be unnecessary. Likewise, if the threat
could be resolved by forcing it to come before whatever step is used to establish

O:C

 the recursion steps

S

k

 through

S

j

 would still be unnecessary. Thus, it is only
when the threat is forced to come between

S

k

 and

S

j

 that this partial plan must be
saved.

Our approach for controlling such recursion is two-pronged. First, we use an
ordering strategy that prevents expansion of open conditions like

O:C

 unless/until
1) some other condition links into the loop (as in Figure 2) or 2) a threat appears to
the loop condition that must be ordered within the loop (as in Figure 3). Second,
we specify conditions where such recursive plans can actually be pruned. To make
all of this precise, we first need some definitions:

Definition 1:

An open condition

O:C

 is said to be

exactly recursive

 if:

1. For every causal link path

P

 from O:

C

 to the goal, there is a causal link

L:

 in

P

.

2. None of the

S

j

are ordered with respect to each other.

We refer to the causal links

L

 as the

root-links

 of the recursion.

■

In the example in Figure 1, is the only root link for the recursive open
condition

O:C

.

Definition 2:

Let

O:C

 be a recursive open condition, and let

L

 be its root links. We
say that

D

 is a

loop descendant

 for

O

 if every causal link path from

D

 to a goal con-
tains a link .

■

Note that the condition

O

 will always be a loop descendant, but there may be many
more other (non-recursive) open conditions generated by steps in the loop, and
these conditions will generally be loop descendants.

In the example in Figure 1,

O:C

 is a loop descendent, but any other open conditions
resulting from steps from

S

k

 through

S

j

 (inclusive) would also be loop descendents.

Figure 2:

Link into a step between repeated open conditions.

Figure 3:

Threat to

C

 that can only be resolved by placing

S

t

 between

S

k

 and

S

j

. The dashed
edges indicate ordering constraints, and the thick grey edge indicates a threat.

FinishSi
CSj

O:C Sk

D Sl

FinishSi
CSj

O:C Sk

St

Si Sj
C→

Sj Si
C→

l L∈

September 21, 1995 4

Definition 3: Let O:C be a recursive open condition, and let L be the root links of
the recursion. A step T is said to be loop threat for O if:

1. T plausibly threatens C (T has an effect).

2. T necessarily precedes some . ■

In Figure 3, the step St is a loop threat for O:C.

We can now state our open condition ordering strategy precisely.

Recursion Ordering Strategy: Let O be a recursive open condition. If there is no
loop threat for O, the planner is prevented from working on O and any other loop
descendant D for O. ■

In practice, we manage this by marking such open conditions as suspended. All
suspended conditions for a loop must be re-enabled if either:

1. A link is made to a step between O and one of its root links,

2. A loop threat for O appears.1

In addition, a specific suspended loop descendent D will need to be re-enabled
whenever a link is made to any step between D and a root link.

Roughly speaking this strategy suspends all open conditions in a loop, and only re-
enables them if either another condition links into the loop or a loop threat occurs.

Theorem 1: A partial plan can be pruned if all open conditions in the plan are sus-
pended, and all threats have been resolved.2 ■

For the example in Figure 1, the open condition O:C would be suspended along
with any other conditions descendant from . The plan can be pruned by
this theorem if no links (as in Figure 2) are made into the loop, and no loop threats
(as in Figure 3) occur.

3 Detection and Early Pruning

Although the method described in the previous section can be used as is, there is
considerable overhead involved in recognizing recursion. For each new step added
to the plan, the planner would need to search each causal link path to the goal, and
look to see if any of the newly added open conditions are present on the path.
While this is inexpensive for shallow plans, the cost grows significantly with plan
depth and complexity. In [13], we introduced a structure called an operator graph

1 This simple strategy still admits some non-minimal plans. In practice, we use a more complex
strategy. We do not re-enable the suspended open conditions because it still might be possible to
resolve the threat by ordering it before the recursive condition O. We wait until no other open con-
ditions remain, force the threatening step to come within the loop, and then re-enable the suspended
conditions.
2 In this case, the plan is not minimal (see [7]).

C¬

l L∈

Sj Si
C→

September 21, 1995 5

that captures the interaction between operators relevant to a goal and set of initial
conditions. In that paper, operator graphs were used for analyzing possible
conflicts between operators relevant to a planning problem. However, the operator
graph can be used for many other purposes, including recognizing:

1. Open conditions that have the potential to be recursive

2. Open conditions in a partial plan that will never result in links to steps in a
suspended loop

3. Open conditions that will never lead to threats to a suspended condition

To explain these further, we first need to review the basics of operator graphs.

An operator graph is a directed bipartite graph containing one operator node for
each operator relevant to a goal and one precondition node for each precondition
of each such operator. The graph is constructed recursively by working backwards
from the goal, according to the following rules:

1. There is an operator node for the Finish operator.

2. If an operator node is in the graph, there is a precondition node in the graph
for each precondition of the operator, and a directed edge from the precon-
dition node to the operator node.

3. If a precondition node is in the graph, there is an operator node in the graph
for every operator with an effect that unifies with the precondition, and
there is a directed edge from the operator node to the precondition node.

Figure 4 shows an operator graph for a simple travel problem where the goal is to
be someplace with gas, and there is one operator:

Drive(x,y)
Preconditions: At(x), Road(x,y)
Effects At(y), ¬ At(x)

(Lower case letters are used for variables. Constants and relations are capitalized.)

There are two arcs into the goal condition At(y) indicating that there are two
possible ways of achieving it: one by linking to the initial conditions and the other
by using the Drive operator. Similarly, there are two arcs into the At precondition of
Drive. It too can potentially be satisfied by binding to the initial conditions, or by
using another Drive operation. The other precondition of Drive, Road(x,y), can only
be satisfied by the initial conditions, but there are several possible ways of doing
so, indicated by the bundle of arcs from Start to Road(x,y). Likewise, the other goal
condition Gas(y) can only be satisfied by the initial conditions, but again there are
several possible ways of doing so.

September 21, 1995 6

3.1 Detecting Recursion

Our first observation is that loops within the operator graph indicate possible
recursion during planning. More precisely:

Theorem 2: Let O be an open condition, and let P be its corresponding precondi-
tion node within the operator graph. (That is, the corresponding precondition node
for the operator used in the step that gave rise to O.) If O is a recursive open condi-
tion, P must be part of a strongly-connected component (SCC)3 within the operator
graph. (The converse is not always true.) ■

The impact of this theorem is that the planner does not have to examine every open
condition for possible recursion, only those that correspond to precondition nodes
in the operator graph contained in SCCs.

In the graph above, there is one SCC that contains the Drive operator and its
precondition At(x). As a result, the only open conditions that need to be checked for
possible recursion are At open conditions that result from adding a Drive step to the
plan.

SCCs can also be used to limit the amount of search involved in deciding whether
a candidate open condition is recursive.

Theorem 3: Suppose O is an open condition that is a possible candidate for recur-
sion, and suppose that the corresponding precondition P in the operator graph is in
a SCC K. Let be a causal link along a path from O to the goal. If the
operator node in the operator graph corresponding to Sj is not in the SCC K, no
causal link between Lij and the goal can be a root of the recursion. ■

The import of Theorem 3 is that the planner can stop looking up the causal link
chain as soon as it leaves the SCC. (For the example above, this theorem has no
impact, because the first causal link in the chain that is outside the SCC would be
the one from Drive to Finish, establishing the goal.)

3 A strongly connected component is a maximal set of nodes such that there is a directed path in the
graph from any node in the set to any other node in the set. Any loop in a directed graph (like the
one in Figure 4) will be part of a SCC. SCCs and algorithms for finding them are described in algo-
rithms texts such as [2].

Figure 4: Operator graph for a simple travel problem.

Finish

At x()

Start
Road x y,()

Drive x y,()

Gas y()

At y()

Lij Si Sj
C→ :

September 21, 1995 7

3.2 Detecting Potential Links and Threats

It would be nice if we could tell which open conditions in a plan have the potential
to link into a suspended loop. Likewise, it would be nice if we could tell which
open conditions could potentially lead to loop threats. We can do this by looking at
the nodes below the corresponding precondition node in the operator graph.

Definition 4: An operator R is said to be relevant to an open condition O if there is
a directed path from R to the precondition node corresponding to O in the operator
graph. ■

Given a suspension, the set of relevant operators for the remaining open conditions
can help us decide whether the plan must be kept or can be discarded.

Theorem 4: Let P be a partial plan with a suspended open condition O:C. Let U be
the remaining open conditions (including any other suspended open conditions),
and let R be the set of operators relevant to the conditions in U. The partial plan can
be discarded if:

1. No operator in R appears in the SCC of O:C.

2. No operator in R threatens C.

3. P contains no unresolved threats to C. ■

The first of these conditions means that no other operator can link into the
suspended loop. The second and third conditions mean that no threats can arise
that would force re-enablement of the suspended condition. Every possible
completion of this plan will therefore satisfy the conditions of Theorem 1, so the
plan can be pruned.

As an example of the application of his theorem, consider the partial plan shown in
Figure 5. We’ve added the goal condition Rested and the operator Sleep to the
problem description. Sleep has no preconditions and can be used to achieve Rested.
Currently, the open condition At(B) is suspended because it exactly matches the
condition in the causal link . The relevant operators for
Gas(B) and Rested are Start and Sleep. Neither of these appear in the SCC for the
open condition At(B). As a result, this plan can be pruned.

Figure 5: Partial plan with a suspended recursive open condition.

Drive A B,() FinishAt B()→

FinishAt A()

Start
Road B A,()

Drive A B,()

Gas B()

At B()Drive B A,()At B()

Road A B,()

Suspended

Rested

September 21, 1995 8

4 Instance Recursion

In Sections 2 and 3 we considered only exact recursion. Thus, an open condition
P(x,A) would be recursive if all of its paths to the goal contained a causal link with
clause P(x,A), but not if the links only contained clauses P(y,A), P(x,B), or P(x,y). In
other words, for exact recursion, the variables and constants in the recursive open
condition must be identical to the variables and constants in the root conditions. In
the example of Figure 5, the condition At(A) is not recursive, but the open condition
At(B) is.

While the results of Sections 2 and 3 were sufficient to prune the plan in Figure 5,
in general, they are not sufficient to stop all recursion for planning problems in
which the operators contain variables. Consider what would happen in our Drive

example if the planner did not choose a good order for open condition expansion.
The planner could generate an infinite sequence of partial plans like the one shown
in Figure 6. While this open condition ordering may look silly, it is exactly the one

that would be chosen by such “smart” (and generally effective) strategies as the
Least-commitment (LC) strategy used in [10] and Joslin’s LCFR strategy [6].
These strategies choose to expand the open condition with the fewest options.They
get into trouble because there are many roads and many gas stations, but only two
ways of achieving a condition like At(x): adding a Drive step or binding to the single
At fact in the initial conditions. If there is no solution to the above problem
(because you start on an island and all gas stations are on the mainland), planners
with the LC or LCFR strategy would never terminate.

One obvious possibility is to avoid working on conditions such as At(x) and At(y)

until the variables x and y are bound. As it turns out, this isn’t quite right.4 Instead,
we want to avoid working on At(x) and At(y) until the variable z is bound in At(z).
More precisely, we want to avoid At(x) and At(y) as long as they remain an instance
of the root link, At(z).

The reason for this strategy is that until z is bound, the planner doesn’t know what
it is trying to achieve, which, in a recursive situation like this, can lead to lots of

4 One reason is that all open conditions containing the variables of interest may be recursive, so the
variables will never get bound without expanding a recursive open condition. The simplest example
of this is a Drive operator that has no Road precondition (the vehicle might be a Humvee or tank).
In this case, there would be no other open condition to bind the x in At(x).

Figure 6: Recursion resulting from unbound variables.

At y() Drive y z,() At z()Drive x y,()At x()

September 21, 1995 9

irrelevant plans. Another way of thinking about it is this: suppose there is some
plan for achieving At(x), for some binding of x. As long as At(x) remains an instance
of At(z), that same plan would be directly applicable to At(z). Until the planner has
reason to believe that z=B won’t work, there’s no reason this shorter plan shouldn’t
be preferred. In the extreme case where z is never bound (gas is available
everywhere), any plan involving recursion would be non-minimal.

As we did for exact recursion, we now provide a formal definition of instance
recursion and give a suspension strategy.

Definition 5: An open condition O:C is said to be instance recursive if there is a
set of variable bindings V such that:

1. for every causal link path P from O:C’ to the goal, there is a causal link
 in P and (where refers to C instantiated with

the variable bindings V).

2. None of the Sj are ordered with respect to each other.

As before, we refer to the Lij as the root links of the recursion. ■

In the above example At(x) and At(y) are both instance recursions of the root link
, with z bound to x and y respectively.

Instance Recursion Strategy: Let O be an instance recursive open condition. If
there is no loop threat for O then the planner is prevented from working on O and
any other loop descendant D for O. ■

As with exact recursion, we manage this by marking such open conditions as
suspended. In this case all suspended conditions for a loop must be re-enabled if
either:

1. A link is made into a step between O and one of its root links.

2. A loop threat for O appears.

3. Variables bindings are added to the plan so that O is no longer an instance
of one or more of its root links.

In addition a specific suspended loop descendent D will need to be re-enabled
whenever a link is made to any step between D and a root link.

We can now generalize Theorem 1 to the cases involving instance recursion.

Theorem 5: A partial plan can be pruned if all remaining open conditions are sus-
pended (either because of exact or instance recursion) and all threats have been
resolved. ■

As before, the argument is that the plan P is not minimal; if there is a way of
achieving a suspended condition O:C’, that same plan would work for achieving
O:C directly, because C’ is an instance of C.

Lij Si Sj
C→ : C' C V= C V

Drive y z,() Finish
At z()→

September 21, 1995 10

As before, we would like to be able to prune such plans earlier. In Section 3 we
showed how the operator graph can help recognize when outstanding open
conditions can no longer link into or threaten an exact recursion. We can do the
same here. However, we also need to make sure that the outstanding open
conditions cannot bind any of the variables in the root links. We generalize
Theorem 4 as follows.

Theorem 6: Let P be a partial plan with a suspended instance recursive open con-
dition O and let L be the set of root links for the recursion. Let U be the remaining
open conditions (including any other suspended open conditions), and let R be the
set of operators relevant to the conditions in U. The partial plan P can be pruned if:

1. No operator in R appears in the SCC of O.

2. No operator in R threatens the condition of any root link .

3. P contains no unresolved threats to any root link .

4. No open condition in U contains a variable in any of the root link condi-
tions . ■

Although the suspension strategy and pruning theorems for instance recursion look
very similar to those for exact recursion, there is a subtle difference. The final
condition in Theorem 6 makes it much weaker than Theorem 4, so fewer instance
recursive plans can actually be pruned. It is worth noting that instance recursions
sometimes turn into exact recursions (e.g. Figure 5) and are then subject to the
stronger Theorem 4.

5 Experiments

The exact and instance suspension and pruning strategies were implemented in our
ONLP planner (Operator Graph-based partial order planner). We tested the
recursion algorithms on a number of problems drawn from several domains
including: Russell’s Tire World domain[10], Bulldozer [10], a railroad meet/pass
planning domain, towers of Hanoi, Monkey and Bananas, Weld’s Refrigerator
domain, a noncombatant evacuation operation (NEO) domain, and blocks world.
Many of the descriptions for these domains were adapted from the domain library
in UCPOP [9].

ONLP implements a number of strategies for operator graph and plan analysis. For
our tests, we used the following settings:

• Open Condition Ordering: Least Commitment [10] – select the open condi-
tion that can be satisfied in the fewest ways.

• Threat Delay Strategy: DMIN [14] – a least commitment threat resolution
strategy similar to DUNF [10].

l L∈

l L∈

l L∈

September 21, 1995 11

• Variable Analysis: substitute the binding for each variable in the operator
schemas if there is only one possible binding for that variable.

• Cost Function:

The constant penalizes partial plans that have suspended open conditions.
The values used in our tests were (no penalty), and .

• Search Algorithm: Stable best-first--A best first search algorithm that always
breaks ties in the order that the plans were added to the search queue (LIFO).

The results of these tests are shown below. In these charts, Nnormal and Nsuspend

denote the number of plans generated by the planner with and without recursion
suspension and pruning. (These counts do not include the number of plans
explored during threat resolution, only the plans generated using add-link or add-
step. See [10] and [14] for explanation.)

Figure 7 plots the reduction in search space size realized by using recursion
suspension and pruning (Nnormal/Nsuspend) against the size of the search space when
no suspension and pruning is used (Nnormal). Two data series are plotted in this
chart: one for K=1 and one for K=4.

Figure 7: Search space improvement when using recursion suspension and pruning.

Almost all of the points in Figure 7 are above the X-Axis, which indicates that
there was some degree of search space reduction achieved for most problems. The
improvement ranges from none to as much as 139 times on the tire changing
problem. Generally, the improvement is greater for the larger domains and harder
problems. One reason is that these plans tend to be longer, and the odds of a plan
being non-minimal increases with the length of the plan (more opportunities for
recursion). Note that better performance is obtained using the penalty K=4 for

Steps # Unsuspended Open Conds K # Suspended Open Conds()+ +

K
K 1= K 2= K 4=

0.1

1

1 0

100

1000

1 1 0 100 1000 10000 100000

NNormal / NExact
K = 1

K = 4

Nnormal

Nnormal

Nsuspend

September 21, 1995 12

suspended open conditions. This reflects the high probability that the best plan
does not contain recursion.

Figure 8 plots the improvement in search time using recursion suspension and
pruning (Tnormal/Tsuspend) against the time (in seconds) required for solving each
problem with no suspension and pruning (Tnormal).

Figure 8: Time improvement when using recursion suspension and pruning

As with search space size, all points are either close to, or above the X-axis. This
indicates that the overhead of recursion checking and suspension is sufficiently
small that it has little negative impact on planner performance, even when no
search space reduction is realized by the strategy. The overhead of building the
operator graph, and finding strongly connected components was negligible. For
small problems it was typically less than 0.1 seconds, and for all problems it was
less than 1 second.

6 Conclusions

The recursion suspension and pruning strategy outlined in Sections 2, 3, and 4
significantly reduce search time and space for many problems and, in particular,
they reduce search time significantly for large recursive problems. Using the
operator graph to help detect recursion keeps the overhead associated with this
technique to a minimum. Finally, our test results indicate that penalizing plans
with large numbers of suspended open conditions can further improve
performance.

0.1

1

1 0

100

1000

10000

100000

0.001 0.1 1 0 1000 100000

K = 1

K = 4

T Normal / TExactTnormal

Tsuspend

Tnormal (seconds)

September 21, 1995 13

Acknowledgments

We first implemented the suspension method in early 1993. Dan Weld encouraged
us to finally write it up and provided comments on an early draft. Thanks to Tony
Barrett for collecting and making many of the test domains available. This work
was supported by DARPA contract F30602-91-C-0031 and by Rockwell.

References

1. Barrett, A. and Weld, D., Partial order planning: evaluating possible efficiency
gains. Artificial Intelligence, vol 67(1), pages 71–112, 1994.

2. Cormen, T., Leiserson, C., and Rivest, R., Introduction to Algorithms. McGraw
Hill, 1991.

3. Feldman, R. and Morris, P., Admissible criteria for loop control in planning. In
Proc. AAAI-90, pages 151–157, 1990.

4. Etzioni, O., Acquiring search-control knowledge via static analysis. Artificial
Intelligence, vol 62(2), pages 255–301, 1993.

5. Fikes, R., Hart, P., and Nilsson, N., Learning and executing generalized robot
plans. Artificial Intelligence, vol 3(4), pages 251–288, 1972.

6. Joslin, D. and Pollack, M., Least cost flaw repair: a plan refinement strategy for
partial-order planning. In Proc. AAAI-94, pages 1004–1009, 1994.

7. Kambhampati, S., Admissable pruning strategies based on plan minimality for
plan-space planning. In Proc. IJCAI-95, pages 1627 – 1633, 1995.

8. McAllester, D. and Rosenblitt, D., Systematic nonlinear planning. In Proc.
AAAI-91, pages 634–639, Anaheim, CA, 1991.

9. Penberthy, J. and Weld, D., UCPOP: A sound, complete, partial order planner
for ADL. In Proc. KR-92, pages 189–197. 1992.

10. Peot, M. and Smith, D., Threat removal strategies for partial-order planning. In
Proc. AAAI-93, pages 492–499, 1993.

11. Rich, E. and Knight, K., Artificial Intelligence. Second edition, McGraw Hill,
1991.

12. Smith, D., Genesereth, M., and Ginsberg, M., Controlling recursive inference.
Artificial Intelligence, vol 30(3), pages 343–389, 1986.

13. Smith, D. and Peot, M., Postponing threats in partial order planning. In Proc.
AAAI-93, pages 500–506, 1993.

14. Smith, D. and Peot, M., A Note on the DMIN strategy. Technical Memo, Rock-
well Palo Alto Laboratory, 1993. Available on-line from http:://www.rpal.rock-
well.com:80/~de2smith/publications.html

15. Tate, A., Generating project networks. In Proc. IJCAI-77, pages 888-893,
1977.

